Commentary: Olfactory aversive conditioning during sleep reduces cigarette-smoking behavior
نویسندگان
چکیده
Recent findings suggest that novel associations can be learned during sleep. However, whether associative learning during sleep can alter later waking behavior and whether such behavioral changes last for minutes, hours, or days remain unknown. We tested the hypothesis that olfactory aversive conditioning during sleep will alter cigarette-smoking behavior during ensuing wakefulness. A total of 66 human subjects wishing to quit smoking participated in the study (23 females; mean age, 28.7 ± 5.2 years). Subjects completed a daily smoking diary detailing the number of cigarettes smoked during 7 d before and following a 1 d or night protocol of conditioning between cigarette odor and profoundly unpleasant odors. We observed significant reductions in the number of cigarettes smoked following olfactory aversive conditioning during stage 2 and rapid eye movement (REM) sleep but not following aversive conditioning during wakefulness (p < 0.05). Moreover, the reduction in smoking following aversive conditioning during stage 2 (34.4 ± 30.1%) was greater and longer lasting compared with the reduction following aversive conditioning during REM (11.9 ± 19.2%, p < 0.05). Finally, the reduction in smoking following aversive conditioning during sleep was significantly greater than in two separate control sleep experiments that tested aversive odors alone and the effects of cigarette odors and aversive odors without pairing. To conclude, a single night of olfactory aversive conditioning during sleep significantly reduced cigarette-smoking behavior in a sleep stage-dependent manner, and this effect persisted for several days.
منابع مشابه
Activity of Defined Mushroom Body Output Neurons Underlies Learned Olfactory Behavior in Drosophila
During olfactory learning in fruit flies, dopaminergic neurons assign value to odor representations in the mushroom body Kenyon cells. Here we identify a class of downstream glutamatergic mushroom body output neurons (MBONs) called M4/6, or MBON-β2β'2a, MBON-β'2mp, and MBON-γ5β'2a, whose dendritic fields overlap with dopaminergic neuron projections in the tips of the β, β', and γ lobes. This an...
متن کاملDrosophila Learn Opposing Components of a Compound Food Stimulus
Dopaminergic neurons provide value signals in mammals and insects. During Drosophila olfactory learning, distinct subsets of dopaminergic neurons appear to assign either positive or negative value to odor representations in mushroom body neurons. However, it is not known how flies evaluate substances that have mixed valence. Here we show that flies form short-lived aversive olfactory memories w...
متن کاملAppetitive and aversive olfactory learning in humans studied using event-related functional magnetic resonance imaging.
We combined event-related functional magnetic resonance imaging (fMRI) with olfactory classical conditioning to differentiate the neural responses evoked during appetitive and aversive olfactory learning. Three neutral faces [the conditioned stimuli (CS+)] were repetitively paired with pleasant, neutral, or unpleasant odors [the unconditioned stimuli (UCS)] in a partial reinforcement schedule. ...
متن کاملParallel encoding of sensory history and behavioral preference during Caenorhabditis elegans olfactory learning
Sensory experience modifies behavior through both associative and non-associative learning. In Caenorhabditis elegans, pairing odor with food deprivation results in aversive olfactory learning, and pairing odor with food results in appetitive learning. Aversive learning requires nuclear translocation of the cGMP-dependent protein kinase EGL-4 in AWC olfactory neurons and an insulin signal from ...
متن کاملIn vitro odor-aversion conditioning in a terrestrial mollusk.
We developed an in vitro odor-aversion conditioning system in the terrestrial mollusk, Limax, and found a behavioral correlate of network oscillation in the olfactory CNS. We first examined the odor-induced behavior of Limax, after odor-aversion conditioning in vivo. Shortening of mantle muscles was specifically observed in response to aversively conditioned odors. We previously identified that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2014